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Abstract. This paper investigates some properties of a class of random motions called fractional
Lévy motions (FLMs) and their fractal time extension.

FLM identifies with fractional Brownian motion (FBM) sampled in fractal Lévy time. This
two parameter class of processes borrows hyperbolic temporal dependence to FBM and ‘heavy-
tailedness’ to Ĺevy flights or motions (LM). It is shown that there exists a family of FLMs which
shares with standard Brownian motion (BM) the (strict) diffusivity property that the dispersion
(measured in terms of quantiles) grows as time raised to the power1

2 . Processes from this class
are critical in that they separate both sub/superdiffusive FLMs and finite/infinite-variance motions.
Related Ornstein–Uhlenbeck and multiplicative processes are also briefly investigated. FLMs are
self-similar but not Ĺevy-stable, in sharp contrast to Brownian (whether fractional or not) and
standard or fractional stable (in the Taqqu–Wolpert sense) Lévy motions (FSMs). Stable processes
are self-similar as a result of Lévy stability. However, the converse is false; there are motions with
stationary increments which are self-similar but not stable: the fractional Lévy motion is one of
them, in the pure jump process class. It turns out that all processes discussed so far (BM, FBM,
LM, FLM, FSM) are self-similar with stationary increments.

We finally introduce a natural one-parameterδ-family of ‘fractional’ processes for which
a weaker notion of self-similarity seems to hold, i.e. self-similarity of the unidimensional
distributions. It is fractal time Brownian motion (FT-BM). Such a process is obtained as a weak
limit of fractal time random walk models, withδ ∈ (0, 1) the tail exponent of the waiting times; FT-
BM identifies with Brownian motion now sampled in fractal inverse Lévy time. This construction
extends to FBM, LM and FLM: we therefore introduce and study FT-FBM, FT-LM and FT-FLM
which are the fractal time extensions of FBM, LM and FLM. These processes are not strongly
self-similar, nor stable, nor do they have stationary increments.

1. Introduction

Standard Brownian motion (BM) is a Gaussian non-stationary process. It has stationary
independent increments (SIIs). Its trajectories are continuous but nowhere differentiable; it is
self-similar (SS) with exponent12. LetB1/2(t) be such a process at timet , with B1/2(0) = 0.
Brownian motion is well known to be the microscopic model for heat diffusion.

To explain certain statistical time series arising from finance and hydrology (which exhibit
the so-called Hurst phenomenon [13, 26, 27] with exponentH 6= 1

2) a stochastic motion of
a completely different nature was designed by Mandelbrot and Van Ness in [22]: so-called
fractional BM (FBM) with exponentH ∈ (0, 1), sayBH(t). Chiefly, the hypothesis that the
increments of the previous motion were independent was released while maintaining all other
properties of standard BM: in particular, continuity of the sample paths and stability under
addition (which here means Gaussianity). As a result, the essential feature of FBM is that
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the increment processBH(t) := BH(t + 1) − BH(t) over (say) a unit period of time, while
stationary, presents the property that the covariance function grows as

E[BH(s)BH (s + t)] ∼
t↑+∞

t2(H−1) (1.1)

i.e. has thepower-law decayproperty ifH 6= 1
2. This is in sharp contrast to other ‘standard’

stationary processes (such as Ornstein–Uhlenbeck’s:σe−at/2B1/2(eat ), a, σ > 0) whose
covariance function has exponential decayσ 2 exp−a|t |. As a result, the spectral density
of BH(t) behaves as 1/|f |2H−1 in the vicinity of the frequencyf = 0, showing the divergence
syndrome as soon asH > 1

2. This is the signature that ‘long cycles’ are present in the
phenomenon to be modelled by FBM which could be one of the possible explanations of the
Hurst phenomenon (other explanations exist: see, e.g., [4]). In addition, FBM can be shown
to be SS with exponentH which means that, witha > 0,

{BH(at)}t∈R d= {aHBH(t)}t∈R. (1.2)

Here, symbol
d= indicates that the two processes share the same finite-dimensional

probability distributions.
Another important feature of FBM concerns ‘anomalous diffusion’ since it can easily be

shown that the standard deviation (a dispersion measure) of FBM grows as

σ[BH(t)] ∝ tH . (1.3)

This means thatBH(t) is subdiffusive or antipersistent ifH < 1
2, while it is superdiffusive

or persistent ifH > 1
2 (a model of enhanced diffusion). As a result, the trajectories ofBH(t)

are less (more) ‘regular’ than those of BM in the caseH < 1
2 (H > 1

2) andH is indeed a
measure of this regularity: the Hurst–Hölder exponent of the trajectories. In more precise
terms, 2−H is the Hausdorff dimension of the space–time graph ofBH(t).

In section 2, we briefly recall some known facts about FBM that will be useful in what
follows.

When dealing with anomalous diffusion, another class of processes of interest can
be obtained from the idea of standard BM by loosening the Gaussian hypothesis; in this
extension, the stability under addition requirement is, however, maintained. Searching for
stable symmetric processes with SII that are SS yields the so-called symmetricα-stable (sαs)
class of motions, also called Lévy motions (LMs) or Ĺevy flights,B

α
(t). Hereα ∈ (0, 2) and

the self-similarity exponent ofB
α
(t) is 1/α > 1

2. These random motions have no continuous
sample paths (very large jumps are present but also tiny ones); one of the by-products of these
large jumps is that the mean and variance ofB

α
(t) are ill defined (indefinite and infinite);

however, other equivalent measures of their ‘dispersion’ in time,D(B
α
(t)), show that

D(B
α
(t)) ∝

t↑+∞
t1/α. (1.4)

As 1/α > 1
2, this underlines their superdiffusive character, chiefly arising from the ‘heavy-

tail’ character ofB
α
(t). In more precise terms

P (|Bα(t)| > x) ∝
x↑+∞

t/xα (1.5)

suggesting power-law tails with tail indexα. As α ∈ (0, 2), this property shows that LMs
necessarily have infinite variance. This class of processes is also revisited in section 3 to make
things self-coherent and, it is hoped, to add some new insight here and there.

In section 4, we are interested in a motion,B
α

H (t), which presentsboth remarkable
characters of the two processes just described: power-law decay of the covariance function
(hyperbolic dependence) and heavy tails of the power-law type of the increment process, but
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not necessarily with infinite variance. We call it the fractional Lévy motion (FLM). FLM may
be basically seen as FBM in fractal Lévy time: the trajectories of the FLM are discontinuous.
From this definition, it appears that this process is no longer stable under addition, whereas
it is SS with SS exponent 2H/α > 0, and with stationary increments (SIs). In addition, for
some measure of dispersion

D(B
α

H (t)) ∝
t↑+∞

t2H/α. (1.6)

Subdiffusivity (superdiffusivity) is obtained if 2H/α < 1
2 (respectively 2H/α > 1

2), so
that strict diffusivity is achieved in the critical domain defined by 2H/α = 1

2. This shows that
their exists a one-parameter familyB

α

α/4(t), α ∈ (0, 2) with diffusivity properties comparable
to those of the standard BM but, of course, of completely different statistical nature (mixing
power-law decay of the covariance function and hyperbolic tail behaviour). The central process

of this family isB
1
1/4(t) is obtained withα = 1 which one may call the fractional Cauchy

process.
For this class of processes, some control of the tail behaviour holds. In more precise terms,

it may be shown that

P (|BαH (t)| > x) ∝
x↑+∞

t/xα/(2H). (1.7)

The tail index is nowα/(2H), which is allowed to vary on the whole positive real line, as
α ∈ (0, 2) andH ∈ (0, 1). Thus the critical domain 2H/α = 1

2 also separates situations with
finite ((2H)/α < 1

2) or infinite ((2H)/α > 1
2) variance.

In section 5, related interesting stationary processes are briefly introduced: the generalized
Ornstein–Uhlenbeck class and multiplicative FLM processes.

BM and LM have SIIs and are stable (either Gaussian- orα-Lévy-stable). Loosening the
condition that the increments are independent, FBM and fractional stable motion (FSM), as
defined in [38], still have SIs and remain stable; the increment processes now exhibit interesting
(hyperbolic) temporal dependence.

Processes with SIs and stable are SS: some statistical space–time invariance under
appropriate dilation holds. This property is an important issue in physics [1,26].

The definition of FLM shows that there are interesting processes with hyperbolic
dependence which are SS-SI but not stable, with a richer tail behaviour than FSM (in the
sense that finite variance is allowed).

Regardless of the stability property, all the processes discussed so far (BM, FBM, LM,
FLM, FSM) are SSandwith SIs (SS-SIs).

In section 6, we present a construction of a natural one-parameterδ-family of ‘fractional’
processes for which a weaker notion of self-similarity seems to hold, i.e. self-similarity of
the unidimensional distributions: this is fractal time BM (FT-BM),δB(t). Such a process is
obtained as a weak limit of fractal time random walk models, withδ ∈ (0, 1) the tail exponent
of the waiting times. FT-BM identifies with BM sampled in fractal inverse Lévy time. This
construction extends to FBM, LM and FLM: we therefore introduce and study FT-FBM, FT-
LM and FT-FLM which are the fractal time versions of FBM, LM and FLM. We denote by
the FT-FLM processδB

α

H (t). For some measure of dispersion, we show that

D[δB
α

H (t)] ∝
t↑+∞

t (2δH)/α.

Subdiffusivity (superdiffusivity) of FT-FLM is now obtained if(2δH)/α < 1
2 (respectively

(2δH)/α > 1
2), so that strict diffusivity is achieved in the critical domain defined by

(2δH)/α = 1
2.
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This construction leads to increment processes which arenot stationary. As a result, such
FT processes are neither SS in the strong sense, nor stable, nor do they have SIs.

2. FBM revisited

2.1. Standard results

With (x)+ := max(0, x), the FBM can be defined [22] via the Wiener (moving average) integral
(H 6= 1

2):

BH(t) = 1

0(H + 1
2)

∫
R
((t − s)H−1/2

+ − (−s)H−1/2
+ ) dB1/2(s) (2.1)

with respect to BMB1/2(t) on the real line withB1/2(0) = 0. This is the single Gaussian
(hence stable) process [23–25] with SIs with the self-similarity property (1.2). By the property
of stationarity of the increments,

{BH(t + s)− BH(t)}t∈R d= {BH(s)− BH(0)}t∈R for all s ∈ R. (2.2)

Just like standard BM, this Gaussian process has zero mean but is not stationary. Indeed,
from the stationarity of variances, its covariance is easily shown to satisfy, using (1.3),

E[BH(s)BH (t)] ∝ |s|2H + |t |2H − |t − s|2H . (2.3)

By contrast, the increment processBH(t) is Gaussian and stationary (in the strong and
weak sense); its covariance function may be computed from (2.3) to give, if the chosen period
is one,

E[BH(s)BH (s + t)] ∝ (|t + 1|2H + |t − 1|2H − 2|t |2H ) (2.4)

thus independent of times and with hyperbolic fadingt2(H−1) ast ↑ +∞. The spectral density
S(f ) (as the Fourier transform of the covariance function) is, withf the (frequency) Fourier
variable,

S(f ) ∝ (1− cos(2πf ))|f |−(2H+1). (2.5)

Thus

S(f ) ∼
f↑0

1/|f |2H−1 and S(f ) ∼
f↑+∞

1/|f |2H+1. (2.6)

This shows that ifH > 1
2, S(f ) diverges at zero. Cycles with very long period are at

stake inBH(t): this is thelong-range dependenceproperty; ifH < 1
2, although the covariance

function still presents power-law decay (thehyperbolic dependenceproperty), ‘long cycles’
are rare asS(f )→

f↑0
0; on the other hand, cycles with short period are more numerous than in

the caseH > 1
2. This is the so-callednegative-dependenceproperty. In the limitH ↑ 0+,

the spectral densityS(f ) ∼
f↑+∞

1/|f |1+
and we get the celebrated 1/f noise [32]. This is a hint

that trajectories withH < 1
2 are more tortuous than those withH > 1

2: the parameterH is
the Hurst–Ḧolder measure of the regularity of the sample paths ofBH(t). Note thatH is the
key parameter in the understanding ofboth low- and high-frequency behaviour ofBH(t). It
may be shown that the (Hausdorff) dimension of the trail (respectively the space–time graph)
of BH(t) is min(1, 1/H) = 1 (respectively 2−H ) and thatBH(t) is 1/H -variation bounded.

Remark 1. The fact thatBH(t) isH -SS, Gaussian with variancet2H is not characteristic of
this process: the stationarity of the increments is also a central point. To see this, consider
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the processB1/2(t
2H ) which is standard BM in deterministic ‘local time’t2H , different from

‘clock time’ t . (This operation is merely a deterministic ‘change of time’ which will be allowed
to berandomin section 4, leading to very distinct features.) This process is easily seen to be
H -SS, Gaussian with variancet2H . However, it hasno SIs which may be deduced from its
covariance function which is inf(s2H , t2H ), in sharp contrast with that (2.3) of FBM.

Remark 2. There are some current projects [3, 30, 34] (and see also [12] for a work in this
direction in a deterministic setup and for the bridge process), whose ambition is to design
random motions similar to FBM, excepting that the Hurst–Hölder coefficient is allowed to
vary with time. Depending on the type of variability ofH(·) with time, these more general
processes are called multifractional BM (MBM) if functionH(·) is Hölder continuous or even
generalized MBM (GMBM) allowing for discontinuities inH(·). The central feature here is a
loosening of the condition that the increments of the FBM are stationary but we shall not enter
into this interesting problem in this paper.

3. Lévy flights revisited

We review in this section some basic ingredients characterizing LMs [10,20,35]. For examples
of applications in physics see [1,5,14,16,18,36,37] and references therein.

3.1. Most remarkable statistical properties

With α ∈ (0, 2), sαs LMs are processes with stationary independent increments. They share
the stability property

∀t > 0, ∀c ∈ (0, 1) : {c1/αB
α

1(t) + (1− c)1/αBα2(t)}t∈R d= {Bα(t)}t∈R (3.1)

where(B
α

1(t), B
α

2(t)) are two independent statistical copies ofB
α
(t). This notation is, as

usual, relative to any finite-dimensional distributions ofB
α
(t). The stability property is a

particular case of a more general one, called semi-stability, introduced in [19], allowing for
shifts. It may be shown from (3.1) that the following self-similarity property holds:

{Bα(at)}t∈R d= {a1/αB
α
(t)}t∈R a > 0. (3.2)

α-stable LMs are SS with self-similarity index 1/α.
As a result, the characteristic function of the unidimensional distribution reads

8
α
(t, λ) := EeiλB

α
(t) := e−t |λ|

α

λ ∈ R α ∈ (0, 2) (3.3)

which is the Ĺevy–Khintchine representation of such processes [21]. Hereλ is the Fourier
variable, dual of space.

Characteristic functions defined by (3.3) are real with respect toλwhich indicates that the
underlying probability density function (DF) ofB

α
(t), sayf α(t, x), is symmetric in spacex:

f α(t, x) = f α(t,−x). The expression of this density is known from the work of Bergström
Feller [8] and has the following formal expression:

f α(t, x) = 1

t1/α
f α(x/t1/α) with f α(x) = 1

π

∫ +∞

0
e−y

α

cos(xy) dy (3.4)

which, in the caseα = 1 (Cauchy) reduces to the well known closed form

f α=1(t, x) = 1

πt
/(1 + (x/t)2). (3.5)
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Now, if Fα(t, x) := P (B
α
(t) 6 x) is the probability distribution function (PDF)

of B
α
(t), the symmetry property of the DF translates intoFα(t, x) = F

α
(t,−x), with

F
α
(t, x) := 1 − Fα(t, x) the complementary PDF. In addition, it is known, using (3.3),

that

F
α
(t, x) ∝ tx−α as x ↑ +∞. (3.6)

Thus,B
α
(t) is heavy tailed with tail indexα (the Zipf–Pareto model [33,44]).

From the expression of the characteristic function in (3.3), one also concludes thatB
α
(t)

has no moment of any order; in particular, the meanE[B
α
(t)] is indefinite, whereas the

order-two momentE[(B
α
(t))2] is infinite: moments are inappropriate in the Lévy variables

context.
However, a natural measure of centrality in such a context is the median functionxα(t)

defined byFα(t, xα(t)) = 1
2 which is the null function here from the symmetry property.

Additionally, a good measure of dispersion is the ‘most probable fluctuation’ function,dα(t),
defined here by

P (|Bα(t)− xα(t)| > dα(t)) = 1
2 (3.7)

in terms of quantiles. Fromxα(t) = 0 and the symmetry property of the PDF,dα(t) is defined
by F

α
(t,−dα(t)) − Fα(t, dα(t)) = 1

2, hence byF
α
(t, dα(t)) = 1

4. Consequently, from the
tail equivalence, the asymptotic form of the dispersion ofB

α
(t),D(B

α
(t)) := dα(t), is

D(B
α
(t)) ∝

t↑+∞
t1/α. (3.8)

Asα ∈ (0, 2), 1/α > 1
2; this shows that, with the dispersion function measured in terms of

quantiles,B
α
(t) is alwayssuperdiffusive. This result follows from the heavy-tailed character

of the jumps generating this process, and from the infinite-variance property.
Let us here make a remark underlining the central role played by this measure of dispersion.

Remark 3. These measures of centrality and dispersion are also meaningful in the Gaussian
FBM and BM setup. The FBM has the Gaussian density

fH (t, x) = 1√
2πtH

exp

[
− x2

2t2H

]
. (3.9)

LettingFH(t, x) := P (BH (t) 6 x) stand for the PDF ofBH(t), the median function of
BH(t) is zero for symmetry reasons and its most probable fluctuation,dH (t), is defined by
FH(t, dH (t)) = 1

4. Now, from l’Hospital’s rule it is well known that

FH(t, x) ∼ tH

x
exp

[
− x2

2t2H

]
for large x. (3.10)

This shows thatD(BH (t)) := dH (t), verifies the asymptotics

D(BH (t)) ∝
t↑+∞

tH (3.11)

to be compared with (1.3) which, however, is exact.
Thus, the common dispersion measure to be used when comparing the spreading ofBH(t)

andB
α
(t) is the most probable fluctuation.

We finally underline an interesting additional property of LM concerning large deviation.
The tail behaviour (3.6) allows us to derive some additional properties of the LM. Let

B
α

∗ (t) := sup
s6t

B
α
(t) (3.12)
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be the supremum LM. From the property that LM has SII, it follows from elementary calculus
on extreme statistics [9,11] that

P (B
α

∗ (t) > x) = 1− (1− P (Bα(1) > x))t (3.13)

so that, using (3.6),

P (B
α

∗ (t) > x) ∝
x↑+∞

tx−α. (3.14)

ThusB
α
(t) andB

α

∗ (t) are tail-equivalent which means [7] that

P (B
α
(t) > x)

P (B
α

∗ (t) > x)
→
x↑+∞

1. (3.15)

A consequence of (3.14), (3.15) is the following: ifα > 1, we have, from the law of large
numbers1

t
|Bα(t)| → v0 := E|Bα(1)| < +∞. Letting |x| = tv, v > v0, formula (3.6) is also

P

(
1

t
|Bα(t)| > v

)
∝

t↑+∞
t1−αv−α. (3.16)

This large deviation result suggests that, ifα > 1, the probability that the space–time
graph ofB

α
(t) quits the cone of equation|x| = vt tends to zero ast raised to the power 1−α.

By contrast, ifα < 1, the probability that the space–time graph ofB
α
(t) remains in the cone

of equation|x| = vt tends to zero as exp(−t1−α):

P

(
1

t
|Bα(t)| 6 v

)
∝

t↑+∞
exp(−t1−αv−α). (3.17)

In the first case,α > 1, the amplitudes of the (heavy-tailed) jumps in the LM are not strong
enough to allow for a departure from a ‘conic’ diffusion as time drifts to infinity, whereas if
α < 1 they are indeed.

3.2. LM is BM in fractal Ĺevy time

We now recall thatB
α
(t) is simply BMB1/2(s) in fractal times = Sα/2(t), which therefore

acts as a ‘subordinator’ (a notion due to S Bochner and worked out by W Feller, S J Taylor
and W E Pruitt: see [26] for the bibliography and [6, 29] for different subordinators such as
log-normal). This simple observation is the central point in the definition of fractional LM in
the next section.

Let S
α/2
(t) > 0 be an increasing process with SII whose Laplace transform is

Ee−pS
α/2
(t) = e−tp

α/2
p > 0. (3.18)

The random variableS
α/2
(t) admits the density at points > 0

gα/2(t, s) =
∑
n>1

(−1)

n!

n

tn
1

0(−nα/2) s
−(nα/2+1). (3.19)

This density satisfies the identity

gα/2(t, s) = 1

t2/α
gα/2(s/t2/α) with gα/2(s) := gα/2(1, s). (3.20)

If α = 1, this expression reduces to

g1/2(t, s) = 1√
2π

t

s3/2
e−t

2/2s . (3.21)
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It can be shown that such processes are asymmetric Lévy processes (called subordinators)
because the jumps of the increments are positive with unbounded Lévy measure with density

α

20(1− α/2) · x
−(α/2+1) for x > 0. (3.22)

The sample paths ofS
α/2
(t) exhibit (positive) jumps with very small amplitude together

with very large hyperbolic jumps.

Next, if B1/2(t) andS
α/2
(t) are independent,

B
α
(t)

d= B1/2(S
α/2
(t)). (3.23)

Indeed, if this is the case and ifgα/2(t, s) is the density ofS
α/2
(t) at s, Bayes’ formula

yields

EeiλB
α
(t) =

∫ +∞

0
EeiλB1/2(s)gα/2(t, s)ds=

∫ +∞

0
e−sλ

2/2gα/2(t, s)ds = e−t (
λ2

2 )
α/2 = e−

t

2α/2
|λ|α
.

(3.24)

This operation is simply a change of time, so thatB
α
(t) can be interpreted as BMB1/2(s)

in fractal (Lévy-stable) times = Sα/2(t): in other wordsB
α
(t) is a subordinate of BM. For

example, ifα = 1 , the density of the random variableB
1
(t) (Cauchy motion) is easily shown

to be, from (3.21),

f 1(t, x) =
∫ +∞

0

1√
2πs

e−x
2/2s 1√

2π

t

s3/2
e−t

2/2s ds = t

π

1

t2 + x2
(3.25)

as expected from (3.5).

4. Fractional LMs

We now define symmetric fractional LM (FLM),B
α

H (t), in the following way:

B
α

H (t) := BH(Sα/2(t)) (4.1)

thus as FBM in independent Lévy time. This approach is a natural extension to FBM
of definition (3.23) which only concerned BM, and was suggested in [26, p 292]. The
definition (4.1) and the moving average representation (2.1) of FBM yields a moving average
representation of FLM and of the increment process, with standard BM as driving integrator.

Let us now exhibit some properties of this process. This process is SS, with SS index
2H/α > 0:

{BαH (at)}t∈R d= {a(2H)/αBαH (t)}t∈R a > 0 (4.2)

as a result of the SS properties of its constitutive processes{Sα/2(at)}t∈R d= {a2/αS
α/2
(t)}t∈R

and{BH(at)}t∈R d= {aHBH(t)}t∈R. It has SIs because this property is shared byBH(s) and

S
α/2
(t). It has discontinuous sample path (as a subordinate of an asymmetric Lévy process). In

some sense (see, e.g., [26, p 292]), the trail ofB
α

H (t) has intrinsic dimension min(1, α/(2H)).
However, the processB

α

H (t) is notstable. Indeed, its characteristic function is

8
α

H(t, λ) := EeiλB
α

H (t) =
∫ +∞

0
e−s

2Hλ2/2gα/2(t, s)ds (4.3)
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which has nothing to do with the characteristic function of a stable distribution. It involves

the Laplace transform, sayψα,H (x), of the variableS2H
α/2 with Sα/2 := Sα/2(1) a Lévy-stable

variable, i.e.Sα/2 raised to the power 2H . Indeed, from (3.20), formula (4.3) reduces to

8
α

H(t, λ) = ψα,H (t(4H)/αλ2/2) with ψα,H (x) :=
∫ +∞

0
e−xs

2H
gα/2(s) ds x > 0.

(4.4)
Using (3.19), (3.20), we get the power-series expression

ψα,H (x) = 1 +
∑
n>1

(−1)n

n!

0(1− (nα)/(4H))
0(1− (nα)/2) x(nα)/(4H). (4.5)

The Lévy-stability property isnot preserved under the subordination operation, as soon
asH 6= 1

2.

Remark 4. This process shouldnotbe confused with the linear fractional stable motion (FSM)
defined by Taqqu and Wolpert [35,38] as

L
α

H (t) :=
∫
R
((t − s)H−1/α

+ − (−s)H−1/α
+ ) dB

α
(s) H 6= 1/α (4.6)

extending the moving average Wiener representation of FBM (2.1) to Lévy driving integrators,
and with adequate integrands. This process is sαs andH -SS and has not much in common

withB
α

H (t). Note, however, thatL
2
H (t) ≡ BH(t), whereasB

α

1/2(t) ≡ B
α
(t): the FSM reduces

to FBM asα = 2, whereas FLM reduces to standard LM asH = 1
2.

For the FSM, the characteristic function of the one-dimensional marginal may be shown
to be e−t

αH |λ|α , if t > 0, hence stable (see, e.g., proposition 7.4.3 of [35]). It follows that
P (L

α

H (t) > x) ∝ tαHx−α asx ↑ +∞, and thatD(L
α

H (t)) ∝
t↑+∞

tH , which is similar to the

behaviour of FBM. If 1/α < H < 1, andα ∈ (1, 2), this process may be shown to present
long-range dependence, in some extended sense [35]. Clearly, in this approach, the stable
character of the resulting process has been favoured and this model is the natural extension
of the FBM in this respect. However, forcing the stable character has one main drawback: it
cannot represent jump processes with finite variances which seems to be a practical limitation
in some applications (including finance). Equation (4.1) goes in this different direction: finite-
variance processes are allowed for by a judicious choice of the parameters(α,H) (see below);
however, the stability property had to be abandoned.

Let us now exhibit some additional properties ofB
α

H (t).
If FαH (t, x) := P (BαH (t) 6 x) is the PDF ofB

α

H (t), andF
α

H (t, x) := 1− FαH (t, x) the
complementary PDF, we have the heavy-tail behaviour

F
α

H (t, x) ∝
x↑+∞

tx−α/(2H). (4.7)

This conclusion may be derived in the following simple way.

We first note from (3.18) thatEe−pS
α/2
(t) = e−t (2p)

α/2 ∼
p↑0+

1− t (2p)α/2. As a result, we

have the hyperbolic tail behavioursP (S
α/2
(t) > s) ∝

s↑+∞
ts−α/2 and P (S

α/2
(t)2H > s)

∝
s↑+∞

ts−α/(4H), raising the variableS
α/2
(t) to the power 2H . Hence,Ee−pS

α/2
(t)2H ∝

p↑0+
1 −

t (2p)α/(4H).

Now, from (4.3),8
α

H(t, λ) = Ee−pS
α/2
(t)2H (p = λ2/2), so that, for some appropriate

constantK > 0,

8
α

H(t, λ) := EeiλB
α

H (t) ∼
λ↑0

1−Kt |λ|α/(2H) α ∈ (0, 2) H ∈ (0, 1). (4.8)
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The control of the tail behaviour (4.7) follows.
It should be noted from (4.7) that the larger(2H)/α is, the heavier the tails of the process

B
α

H (t) are. If (2H)/α < 1
2, the processB

α

H (t) has finite variance. If12 < (2H)/α < 1,
the processB

α

H (t) has finite absolute meanE|BαH (t)| < +∞ but is with infinite variance. If
(2H)/α > 1, the absolute mean itself diverges. These tail properties are in sharp contrast to
those of the FSM (4.6) which arealwayswith infinite variance asα ∈ (0, 2).

Thus, again, the definition of FLM (equation (4.1)) yields SS with SIs jump processes
which are not stable. These processes are heavy tailed but not necessarily with infinite
variances: the tail indexα/(2H) may vary on the whole positive real line and isnot limited
to the interval(0, 2). Allowing for such a richer tail behaviour led us to abandon the stability
condition in the definition of a FLM, which on the contrary is an essential feature of the FSM.

Let us now derive information relating to the asymptotic dispersion ofB
α

H (t).
The median function ofB

α

H (t) clearly is the null function for symmetry reasons, whereas
the asymptotic form of the (quantile) dispersion ofB

α

H (t),D(B
α

H (t)) := dαH (t), is

D(B
α

H (t)) ∝
t↑+∞

t (2H)/α (4.9)

from the tail behaviour (4.7). Note that the equationH = α/4 separates the subdiffusive region
(H < α/4) from the superdiffusive one (H > α/4): we shall call this the diffusive region of
B
α

H (t). ThusB
α

α/4(t), α ∈ (0, 2) is a class of FLM with diffusive properties similar to that
of standard BM although, of course, of a completely different statistical nature. This can be
achieved at the only condition thatH < 1

2 (the underlying FBM has to be subdiffusive). For
these processes, the antipersistence character which forces the underlying FBM to meander
exactly compensates for the superdiffusivity property arising from the heavy-tailed character

of the resulting process. Note that a special role in this family is played byB
1
1/4(t) obtained

for α = 1, which may be called fractional Cauchy motion.
Let us finally consider the structure of correlations, which is poorly understood at

present. We shall limit ourselves to the case 0< (2H)/α < 1 and distinguish between
0< (2H)/α < 1

2 and 1
2 < (2H)/α < 1.

• 0 < (2H)/α < 1
2. This is the finite-variance case. It follows from lemma 7.2.1 of [35]

that, in this case,B
α

H (t) is a finite variance(2H)/α-SS with SIs process. As a result, it
admits the covariance function given in (2.3) where 2H/α should be substituted toH .
Concerning the increment processBαH (t), its covariance function is given by (2.4) where
2H/α is again substituted forH . As 2H/α < 1

2, the covariance function has power-law
decay but the spectral density does not diverge atf = 0 (see (2.6)): we have no long-range
dependence there, simply negative dependence.
• 1 > (2H)/α > 1

2. In this case, the temporal dependence structure cannot be measured
in terms of the covariance function (it is ill defined due the presence of too large jumps).
This is also the case in the FSM model for which the notions of covariation or codifference
have to be used instead [35]. However, these notions are adapted to stable processes and
the FLM is (again) not stable: these notions are inappropriate in our case. We propose
to substitute this notion with that of the quantile covariance function (see below for a
definition), sayQ, which isconjecturedto behave according to

Q[BαH (s), B
α
H (s + t)] ∼

t↑+∞
t2((2H)/α−1) (4.10)

in the parametric domain12 < (2H)/α < 1. The quantile spectral density, defined
as the Fourier transform of the quantile covariance function should therefore behave as
1/f 4H/α−1 in the vicinity of the frequencyf = 0, showing the divergence syndrome in
this region.
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We now define the quantile correlation notion used in (4.10) which is believed to play a
central role here. The quantile covarianceQ(X, Y ) of two dependent variablesX andY , with
respective mediansmX andmY , and respective dispersionsdX anddY may be defined in the
following way. Consider the two-dimensional extension of (3.7):

P (|X −mX| > x, |Y −mY | > y) = 1
2 . (4.11)

This equation generates a one-dimensional curve, sayC, in the(x > 0, y > 0) quadrant;
this curve intersects the axisy = 0 andx = 0 at points with coordinates(dX, 0) and(0, dY ).
Next, define the curveC ′ in the following implicit way:

P (|X −mX| > x)P (|Y −mY | > y) = 1
2 . (4.12)

The curveC ′ also intersects the axisy = 0 andx = 0 at points with coordinates(dX, 0)
and(0, dY ). Now, if (X, Y ) is an independent vector, the curvesC andC ′ coincide; on the
other hand, in the case of total dependence whereY is a deterministic function ofX, (4.11)
reduces toP (|X − mX| > max(x, y)) = 1

2 so that curveC identifies with the segments
(x = dX, 0 6 y 6 dY ) ∪ (0 6 x 6 dX, y = dY ). This suggests that the quantile covariance
Q(X, Y ) of two variablesX andY may be defined to be the area enclosed betweenC andC ′.
Note that this ‘correlation’ notion may also be used for jointly stable vectors themselves.

5. Related stationary processes

5.1. Generalized Ornstein–Uhlenbeck processes

So far, we have been concerned with ‘free’ motions, either Brownian or Lévy. It is interesting to
consider such motions in the linear force (Langevin) context. We shall formulate this problem
using the so-called Lamperti transform, inspired by group theory. This approach emphasizes
the fact that self-similarity and stationarity are closely related: an exponential time transform
translates scale invariance into shift invariance of the stationary process.

As is well known from [19], the process

U1/2(t) := σe−at/2 · B1/2(e
at ) a > 0 σ > 0 (5.1)

identifies with the standard Ornstein–Uhlenbeck process [41,42], which describes the motion of
a Brownian particle in the harmonic potential1

2ax
2. Alternatively, this process may be viewed

as the solution of a stochastic differential equation with a linear drift, driven with additive
Brownian noise. It is stationary as a result of the classical propertyE[B1/2(s)B1/2(t)] =
inf (s, t) of BM, so that

E[U1/2(s)U1/2(s + t)] = σ 2e−a|t | (5.2)

showing now exponential decay.
It is therefore possible to define in a similar way the fractional Gauss–Ornstein–Uhlenbeck

process as

UH(t) := σe−aHt · BH(eat ) da > 0 σ > 0 (5.3)

whose covariance function can be shown to behave asymptotically as

E[UH(s)UH (s + t)] ∼ σ 2e−2aH |t | as |t | ↑ +∞ (5.4)

as a result of the expression (2.3) for the covariance function of the FBM.
Both standard Ornstein–Uhlenbeck and fractional Gauss–Ornstein–Uhlenbeck processes

share the same Gaussian invariant DF; however, they have different autocovariance function
and may be discriminated in this way.
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Following the same guiding lines, the Ornstein–Uhlenbeck–Lévy process

Uα(t) := σe−at/α · Bα(eat ) a > 0 σ > 0 (5.5)

may been considered, leading to non-Gibbsian (or non-Boltzmann) stationary solutions. For
these processes, from (3.1),

EeiλUα(t) = 8α
(eat , λσe−at/α) = exp−eat |λσe−at/α|α = exp−|λσ |α (5.6)

independent of time, with a non-Gaussian invariant DF, but of Lévy type, with infinite variance
(see [14] for a similar account but in a different language; see also [39,40]).

We finally define the fractional Ornstein–Uhlenbeck–Lévy process as

Uα
H (t) := σe−2aHt/α · BαH (eat ) a > 0 σ > 0. (5.7)

For this kind of process, from (4.4) and property (3.20)

8
α

H(t, λ) := EeiλB
α

H (t) =
∫ +∞

0
e−s

2Hλ2/2gα(t, s)ds = 8α

H(1, t
2H/αλ). (5.8)

As a result,

EeiλUα
H (t) = 8α

H(e
at , λσe−2aHt/α) = 8α

H(1, σλ) =
∫ +∞

0
e−s

2H (σλ)2/2gα(s) ds (5.9)

characterizes its invariant DF. We shall call this distribution the symmetricfractionalLévy DF.
Note that it isnot a Lévy-stable distribution, so that this property discriminates the process
(5.7) from the standard Ornstein–Uhlenbeck–Lévy process (5.5). The symmetricfractional
Lévy DF exhibits power-law tails with indexα/(2H) > 0; it has the characteristic function
given by (5.9), which, from (4.4), may be written asψα,H ((σλ)2/2) in terms of the function
ψα,H .

5.2. Multiplicative FLM processes

In this section, we would like to briefly introduce an interesting class of processes where FLM
may find application; we adopt financial language for historical reasons but it certainly is not
limitative: there will be meaningful applications in other areas, such as physics and population
biology—wherever some highly fluctuating process (such as the price process) accumulates
fluctuations and is bound to remain positive for some physical reasons. In such models it is
postulated that there is a regulation mechanism (an arbitrage) which sooner or later forces the
physical phenomenon to increase when it is close to becoming extinct (i.e. close to zero).

Let, a andσ > 0 be some constants. Define the following multiplicative FLM:

P
α

H (t) := exp(at + σB
α

H (t)) > 0. (5.10)

If H = 1
2, α = 2, B

α

H (t) reduces to standard BM, so that the modelP 1/2(t) identifies
with the Black–Scholes model for a cumulative financial price process at timet (the so-called
geometric BM) [2]. In this model, the logarithm of the cumulative price of a risky asset
logP 1/2(t) is modelled to be the result of interactions caused by a large number of individual
traders: i.e., it is understood as a cumulative BM process, andσ is known as the volatility of
the asset.

Therefore, model (5.10) is a generalization of the Black–Scholes model for cumulative
financial prices in situations where standard BM is replaced by FLM.

The incremental processPαH (t) := PαH (t + 1) − PαH (t) over (say) a unit period of time
indicates the daily variation of price. The relative variation of price (a rate) at timet , say
RαH (t), is therefore the strongly asymmetric process

RαH (t) := PαH (t)

P
α

H (t)
= ea+σBαH (t) − 1> −1. (5.11)
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In contrast, some symmetry is found again for the daily log returns

LαH (t) := log
P
α

H (t + 1)

P
α

H (t)
(5.12)

of the price process, which is found to be

LαH (t) = log(1 +RαH (t)) = a + σBαH (t) (5.13)

in terms of the increments of FLM, after a location-scale transform. In such models, both
relative variation and log-return processes are stationary andLαH (t) ∼ RαH (t) at times where
BαH (t) is small. One of the main advantages in the log differencing of financial data is that
this operation makes them comparable as they become independent of the monetary unit and
the hypothesis of stationarity of the log returns is currently accepted as a satisfactory working
hypothesis—at least with a judicious choice of the period.

Replacing standard BM in the Black–Scholes model by FLM, as in (5.10), amounts to
refuting the two simplifying hypotheses: that the series of log returns are light tailed (here
normal) and that they are without complicated dependence structure in time; the observations
show convincingly enough that both hypotheses have to be rejected: a glance at any series of
daily log returns indeed shows that there are some values much larger than the others, supporting
the evidence of ‘heavy tailedness’ [27,28]. Besides, the infinite variance hypothesis has gained
only marginal popularity: some reports on data with finite variance and infinite third or fourth
moment exist. This supports the pertinence of FLM which may exhibit either finite or infinite
variance depending on its tail indexα/(2H).

However, (5.10) is only one of the possible models for these data; others exist, such as
ARCH models [7] which extend the Black–Scholes model in a different direction: assuming
the volatility to be a complex function of the log returns from the past.

We shall not enter into more detail here, because the central problem is statistical and
consists of the difficult problem of estimating bothH andα from real data. However, we shall
add a final remark: were (5.11) to be a ‘good’ model for relative variation of price in financial
series, then the tails of the processRαH (t) would be ‘extremely heavy’ at all times, in the sense
that the tail probability ofRαH (t) would tend to zeroslowerthan any power-lawr−γ , for any
γ > 0: such distributions are said to be heavy tailed with index zero. This arises from the fact
that exponentiating a random variable, as in (5.11), fattens its tails in a drastic way.

Indeed, fromRαH (t)
d= RαH (1) = ea+σBαH (1) − 1 we get, ifα 6= 2, from (4.7),

P (RαH (t) > r) = P (BαH (1) > 1/σ(log(1 + r)− a)) ∼
r↑+∞

1/(σ logr)α/(2H) (5.14)

so that the tail distribution ofRαH (t) is heavy tailed with index zero, in the sense that, for any
γ > 0,

P (RαH (t) > r)

r−γ
→
r↑+∞

+∞. (5.15)

Very large positive fluctuations allow the process to reset when it gets close to extinction.

6. FT-BMs

Apart from FLM, all the processes that have been considered in sections 2–4 (that is BM,
FBM, LM, FSM) have SI and share the property of stability under addition (either Gaussian or
α-stable); they are also all SS, as a consequence of the stability property. They are thus SS-SI
and stable.
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Thus, FLM is a natural example of a process which isnotstable; this property is lost while
subordinating FBM to a SS-SI Lévy subordinator. However, FLM remains SS-SI. As a result,
all processes discussed so far (that is BM, FBM, LM, FLM, FSM) are all SS with SIs (SS-SI).

In this section, we introduce a one-parameterδ-family of ‘fractional’ processes for which
a weaker notion of self-similarity seems to hold, i.e. self-similarity of the unidimensional
distributions: this is fractal time BM (FT-BM). Such a process is obtained as a weak limit of
fractal time random walk models, withδ ∈ (0, 1) the tail exponent of the waiting times, and
makes use of some simple notions borrowed from renewal process theory [8].

FT-BM identifies with BM subordinated to a fractal inverse Lévy subordinator, which, in
sharp contrast to the SS-SI Lévy subordinator, isnot a SS-SI process.

This construction extends to FBM, LM and FLM: we therefore introduce and study FT-
FBM, FT-LM and FT-FLM which are the fractal time extensions of FBM, LM and FLM.

In sharp contrast to BM, FBM, LM, FLM, these FT-extensions are neither strongly SS,
nor with SIs. And, just as FLM, they are not stable.

6.1. Recurrent renewal processes: continuous time random walks

Let a cumulative stochastic processX(t) be defined in distribution by

X(t)
d= 0 · 1(T > t) + (X(T ) +X(t − T )) · 1(T 6 t) (6.1)

whereT > 0 is a positive random variable known as the first renewal time ofX(t). TimeT is
assumed to be a random variable with a proper (i.e. with total mass unity) DF, sayfT (·). Such
processes are called pure recurrent renewal processes.

Let us briefly comment on this formula. At timeT , X(t) undergoes a first (random)
jump with amplitudeX(T ), possibly dependent on the occurrence timeT of this jump. Fix
time t at whichX(t) is to be evaluated. If the realization of timeT exceeds the timet of
interest, the processX(t) is in the initial state (zero here). IfT 6 t , the value ofX(t) is
the independent sum of the first jump of amplitudeX(s) plus a statistical copy of the process
X(·) in the remaining timet − s, conditionally to the eventT = s. This is a reasonable
way to see a renewal process: it generalizes the familiar compound Poisson process family in
that the inter-arrival time distributions between spikes is aniid sequence but not necessarily
exponentially distributed.

Let us now translate the definition (6.1) in terms of the evolution of the characteristic
function ofX(t). Let

8(t, λ) := EeiλX(t) and φX(s, λ) := EeiλX(s) (6.2)

respectively stand for the characteristic functions of the cumulative processX(t) and of a local
incrementX(s) which occurred at times 6 t . Then

8(t, λ) = P (T > t) +
∫ t

0
8(t − s, λ)φX(s, λ)fT (s) ds. (6.3)

We shall now make an additional simplifying hypothesis.
Assume that the local amplitudes are independent of their occurrence time, so that

φX(s, λ) = φX(λ): the characteristic function of the conditional incrementX(s) is independent
of the particular realizations of the occurrence timeT . Then (6.3) reduces to

8(t, λ) = P (T > t) + φX(λ)
∫ t

0
8(t − s, λ)fT (s) ds. (6.4)
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This is the integral (convolution) equation that8(t, λ) now satisfies. Introducing the
Laplace transforms

8(p, λ) :=
∫ +∞

0
e−pt8(t, λ)dt and φT (p) :=

∫ +∞

0
e−psfT (s) ds (6.5)

of 8(·, λ) andfT (·), respectively, yields

8(p, λ) = 1− φT (p)
p(1− φT (p)φX(λ)) =

1

p(1 + φT (p)

1−φT (p) (1− φX(λ)))
(6.6)

provided thatφT (p)φX(λ) < 1.
Processes whose Laplace transform of the characteristic function satisfies this equation

are known in the literature of physics as continuous time random walks (CTRW). If the inter-
arrival timeT is heavy tailed in such a way that it has infinite mean value, the process is referred
to in the literature as fractal time random walk (FTRW) [15,17,31,43].

These CTRW model some physical phenomenon that is to be described in the following
way: events of randomiid magnitudes, say(Xm)m>1, occur at random timesT n, n > 1, the

inter-arrival times of which, sayTm := T m−T m−1,m > 1, form aniid sequence, withTm
d= T ,

m > 1. The processX(t) cumulates the individual magnitudes which occurred before timet

andX(t) =∑N(t)
m=1Xm, withN(t) the random number of events which occurred at timet .

CTRWs are also calledpurerenewal processes in the literature of probability theory (the
adjective pure is relative to the hypothesis which has been made that the origin of time is an
instant at which some event occurred; if this not the case, the adjectivedelayedis currently
employed and the first event occurs at timeT 0 := T0 > 0, independent of(Tm)m>1 but not
necessarily with the same distribution). If, in addition,

∫ +∞
0 fT (s) ds = 1 (T is ‘proper’) such

renewal processes are said to be recurrent; this has to be opposed to transient renewal processes
for which

∫ +∞
0 fT (t) dt < 1, corresponding to ‘defective’T , allowing for a finite probability

that the first event never occurs, i.e. occurs at timet = +∞. We shall avoid transient processes
in what follows and limit ourselves to recurrent ones. However, among recurrent processes,
we shall distinguish between positive recurrent processes for which the average renewal time
ET := θ < +∞ and null recurrent for whichET = +∞. If ET = +∞, we shall limit
ourselves in this article to situations where this occurs as a result of ’heavy-tailedness’ of the
inter-arrival time:FT (t) ∼ cδt−δ, ast ↑ +∞, with δ ∈ (0, 1). Here,cδ > 0 is a scale factor
for T . In other wordscδ = t δ0 for somet0 > 0 fixing the timescale itself. Note thatcδ has the
dimension of time raised to the powerδ.

Remark 5. This generalization has a drastic impact on the increment process

X(t, t + s) := X(t + s)−X(t) with s, t > 0.

This process may be generated in the following self-coherent way, using the forward recurrence
time notion, sayF(t), which is the random time separating current timet from the next
impulsion:

X(t, t + s)
d= 0 · 1(F (t) > s) + (X +X(t + F(t), t + s)) · 1(F (t) 6 s).

From this expression, one immediately realizes that, except for very particular cases (T

exponentially distributed), the distribution ofX(t, t + s) will depend on boths and t , and
not on s only: the increment process is not stationary in general (except maybe in some
asymptotic sense). Note also that the forward recurrence timeF(t) may itself be generated
through

F(t)
d= (T − t) · 1(T > t) + F(t − T ) · 1(T 6 t).
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6.2. Positive recurrence in the random walk limit: BM

CTRWs are jump processes, in the sense that the sample paths are discontinuous. Let us now
consider a limiting situation where some continuity of the sample paths will be found.

Suppose the jump’s amplitudeX has the very peculiar distribution
1
2 · δ(x − ε) + 1

2 · δ(x + ε)

with ε > 0 andδ(x−ε) the Dirac mass atx = ε (the random walk model). Suppose, in addition,
that the renewal timeT has a density whose first moment is finite, sayE(T ) := θ < +∞
(the property of positive recurrence). The constantθ is thus the expected time between two
consecutive increments ofX(·). Then the Laplace transform offT (·) admits the representation

φT (p) = 1− θp + o(θp) (6.7)

where lim o(x)/x = 0, asx ↑ 0+. In the limitθ ↑ 0+ andε ↑ 0+ (small jumps occur at infinite
rate), whileD1/2 := ε2/θ > 0 (the diffusion constant) is held fixed,

8(p, λ) = 1

p +D1/2λ2/2
(6.8)

so that8(t, λ) = exp−D1/2tλ
2/2.

This is the characteristic function of a centred Gaussian density with varianceD1/2t . The
processX(t) therefore boils down to BMB1/2(t) with diffusion constantD1/2, whatever the
particular form offT . The limit process is thus standard BM, which is SS-SI and stable.

6.3. Null recurrence in the random walk limit: FT-BM

Let us now consider a different limiting situation, which is more degenerate and more
interesting.

Assume now that, withδ ∈ (0, 1),
φT (p) = 1− cδpδ + o(cδp

δ). (6.9)

This form of φT (p) indicates that the renewal timeT now only possesses fractional
moments of order less thanδ < 1: in other wordsP (T > t) ∼

t↑+∞
cδt
−δ and the renewal time

is heavy-tailed (with, in particular,E(T ) = +∞); this is the null recurrence hypothesis of the
underlying renewal process. This is arare eventhypothesis in the primary sense and such
renewal processes identify with FTRWs.

In the limit cδ ↑ 0+ and ε ↑ 0+, while Dδ := ε2/cδ > 0 (the generalized diffusion
constant) is held fixed, we easily get from (6.6), (6.9) the limit form

δ8(p, λ) = 1

p(1 +Dδp−δλ2/2)
. (6.10)

Finally, the limit process,δB(t), has continuous sample paths (as a random walk limit);
however, it isnot stable. Indeed, from (6.10), we get its characteristic function

δ8(t, λ) = φδ(Dδt
δλ2/2) with φδ(x) =

∑
n>0

1

0(1 +nδ)
(−x)n (6.11)

which is neither Gaussian norα-stable. In (6.11), the functionφδ(x) is identified with the
(entire) Mittag–Leffler function, which reduces to exp−x asδ = 1 (the previous case); as
a result, from (6.11), this process has moments of arbitrary order and, in particular, a finite
variance and

σ[δB(t)] ∝ t δ/2. (6.12)
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As δ < 1, δB(t) is always subdiffusive. We shall call this process the FT-BM. As
conventional wisdom suggests, FT-BM is less diffusive as it is in ‘universal’ clock timet .

We now show the following important property.
FTBM δB(t) can be interpreted as BMB1/2(s) in (independent) fractal inverse-Lévy-

stable times = δI (t): in other wordsδB(t) is again a subordinate of BM and

δB(t) = B1/2(
δI (t)) (6.13)

but with an inverse-Ĺevy-stable process as subordinator.

6.3.1. The inverse-Ĺevy-stable subordinator. To see this, let us first construct the
subordinating processδI (t). Consider a cumulative increasing stochastic processI (t) defined
in distribution as in (6.1):

I (t)
d= 0 · 1(T > t) + (I + I (t − T )) · 1(T 6 t). (6.14)

Suppose now that the amplitudeI is positivewith thedegeneratedistributionδ(x − ε2),
with ε > 0 andδ(x − ε2) the Dirac mass atx = ε2; we still assume heavy-tailedness of the
inter-arrival timeT , in the preceding sense:P (T > t) ∼

t↑+∞
cδt
−δ. Proceeding as previously,

in the limit cδ ↑ 0+ andε ↑ 0+, whileDδ := ε2/cδ > 0, we get for this limit a non-decreasing
process: from (6.6),

δ8(p, λ) = 1

p(1 +Dδp−δλ)
. (6.15)

We shall denote such a limit subordinatorδI (t), underlining its dependence onδ. It is the

inverse-Ĺevy subordinator in the sense that, withS
δ
(·) a Lévy subordinator,

δI (t) := inf (s > 0 : S
δ
(s) > t) and Ee−pS

δ
(s) = exp−Dδsp

δ.

In addition, witht > 0,

δI (t)
d= Dδ · t δ ·δ I (6.16)

whereδI is an inverse Ĺevy variable obtained while raising a Lévy-stable variableSδ to the
power−δ, which means that

δI
d= S−δδ with Ee−pSδ = exp−pδ p > 0. (6.17)

Indeed (see [8], vol 2, XIII. 8, (8.4), p 453), we have the Mittag–Leffler formula

Ee−λ·
δI (t) =

∑
n>0

(−λDδ)
n

0(1 +nδ)
tnδ = φδ(Dδt

δλ) (6.18)

and ∫ +∞

0
e−ptφδ(Dδt

δλ) dt = 1

p(1 +Dδp−δλ)
(6.19)

which coincides with the expression in (6.15), characteristic ofδI (t). From (6.18), it is clear
that δI (t) is not a SS-SI process: its characteristic function is not even that of an infinitely
divisible process.
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6.3.2. FT-BM is a subordinate of BM with inverse-Lévy-stable subordinator.Now, to see the
subordination property, withfδI(t)(s) the density ofδI (t) at points > 0, we have

EeiλB1/2(
δI (t)) =

∫ +∞

0
e−s

λ2

2 fδI(t)(s) ds = φδ(Dδt
δλ2/2). (6.20)

Thus,
δ8(t, λ) := Eeiλ·δB1/2(t) = φδ(Dδt

δλ2/2)

which is the characteristic function ofδB(t) (6.11). In addition, from (6.19),

δ8(p, λ) :=
∫ +∞

0
e−ptδ8(t, λ)dt = 1

p(1 +Dδp−δλ2/2)
(6.21)

which is (6.10), characteristic ofδB(t).
As δI (t) has continuous sample paths, from its construction,δB(t) has continuous sample

path, as a composition of two processes with continuous sample paths.

6.3.3. Some additional remarks.The limit processδB(t), is weaklySS with SS parameter

δ/2 ∈ (0, 1
2), which means that for anyt, a > 0, δB(at)

d= aδ/2 ·δ B(t). Assuming this were

the case,δ8(at, λ) = δ8(t, aδ/2λ) so that, taking the Laplace transform,1
a

δ
8(p/a, λ) =

δ8(p, aδ/2λ) which the above expression (6.10) verifies. This weak self-similarity (for any
unidimensional distribution) should not be confused with the stronger one (forany finite-
dimensional distributions) defined in (1.2) which doesnot hold for this process. In addition,
it may be shown that the increments ofδB(t) arenot stationary in the strong sense (2.2).

For δB(t) to be strongly SS in the sense (1.2), would require that the increment process
δB(t, s) := δB(t + s)−δ B(t) would be itself SS, i.e. that

δB(at, as)
d= aδ/2 ·δ B(t, s) for all a > 0

which is not true, chiefly because it isnot true that the increments ofδB(t) are stationary.
Indeed, it is easy to show that a weakly SS process with SIs is strongly SS (although the
reciprocal is false in general: the example in remark 1 exhibits a stronglyH -SS process with
unstationary increments).

Note however, from (6.11), thatδB(t)has moments of arbitrary order and has, in particular,
a finite variance: we have here an example of a non-Gaussian finite variance weaklyδ/2-SS
process with unstationary increments.

We also remark that the ‘Ornstein–Uhlenbeck’ processδU(t) := e−(δt)/2 ·δ B(et ) is only

weaklystationary: that is, for anyt, h > 0, δU(t)
d=
δ

U(t + h); the functionφδ(Dδλ
2/2)

is the characteristic function of its invariant unidimensional DF. This should not be confused
with the strict stationarity property which requires that any finite-dimensional distributions are
invariant under a shift in time. Thisweak-stationarity property is consistent with the weak SS
of δB(t).

6.4. FT-FBM, FT-LMs and FLMs

The construction of FT-BM and those of LM and FLM discussed in this paper allow us to
define various processes of physical interest.

First, the FT-FBM,δBH (t), may be defined, withδ andH ∈ (0, 1), as
δBH (t) := BH(δI (t)) (6.22)

i.e. as FBM in independent inverse-Lévy-stable time. It has continuous sample paths.
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We shall next define the FT-LM,δB
α
(t), with δ ∈ (0, 1) andα ∈ (0, 2), as

δB
α
(t) := Bα(δI (t)) = B1/2(S

α/2
(δI (t))) (6.23)

i.e. as LM in independent inverse-Lévy-stable timeδI (t). Here, both subordinatorsS
α/2
(·)

andδI (·) are assumed independent. This process is a jump process.
Finally, we define the FT-FLM,δB

α

H (t), with δ andH ∈ (0, 1) andα ∈ (0, 2), as

δB
α

H (t) := BαH (δI (t)) = BH(S
α/2
(δI (t))) (6.24)

i.e. as FLM in independent inverse-Lévy-stable timeδI (t).
We now enter into the computational details of their unidimensional distributions.

6.4.1. FT-FBM. First, we note that, witht > 0

BH(t)
d= tH ·G (6.25)

whereG is a standard Gaussian random variable. Thus, from (6.16)–(6.22),
δBH (t)

d= [δI (t)]H ·G d= DH
δ · t δH · [δI ]H ·G (6.26)

and we need to understand the distribution of the product of a standard Gaussian variable with

a Lévy-stable variableSδ raised to the power−δH , as [δI ]H
d= S−δHδ .

Now, from Bayes’ formula, withδ8H (t, λ) := Eeiλ·δBH (t),

δ8H (t, λ) =
∫ +∞

0
e−

λ2

2 s
2H
fδI(t)(s) ds = Ee−[δI (t)]2H λ2

2 . (6.27)

Thus, from (6.16),

δ8H (t, λ) = Ee−D
2H
δ t2δH λ2

2 [δI ]2H
. (6.28)

After some algebraic manipulations similar to those in ([8], vol 2, XIII. 8, (8.4), p 453), we
find the generalized Mittag–Leffler formula

δ8H (t, λ) = φδ,H
(
D2H
δ t2δH

λ2

2

)
(6.29)

with

φδ,H (x) =
∑
n>0

1

0(1 + 2nδH)

0(1 + 2nH)

0(1 +n)
(−x)n (6.30)

being the entire generalized Mittag–Leffler function. Note that, ifH = 1
2, φδ,1/2(x) = φδ(x)

and if δ = 1,φ1,H (x) = exp−x.
If H = 1

2, formulae (6.29), (6.30) reduce, as required, to (6.11). In addition, from (6.29),

σ[δBH (t)] ∝ t δH . (6.31)

If H < 1
2, the FT-FBM is always subdiffusive, whereas ifH > 1

2, the conditionδH < 1
2

(δH > 1
2) yields a subdiffusive (superdiffusive) spreading in time ofδBH (t). In any case, the

fractal time hypothesis tends to ‘slow’ the dispersion of FBM.
We now come to the FT-LM and FT-FLM processes. Before we derive an elementary

study of some of their statistical properties, let us proceed to some random algebra on the
subordinators which appear in (6.23), (6.24).

Set α0 = α/2 ∈ (0, 1), the reduced parameter. In (6.23), (6.24), we need some
understanding of the processδS

α0
(t) := S

α0
(δI (t)) obtained while composing the two

independent subordinators. We have, witht > 0,

S
α0
(t)

d= t1/α0 · Sα0 (6.32)
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whereSα0 > 0 is a Ĺevy random variable for whichEe−λSα0 = e−λ
α0 , λ > 0. Indeed,

Ee−λS
α0(t) = e−tλ

α0 , λ > 0, as required, andP (S
α0
(t) > x) ∼

x↑+∞
tx−α, while it is known that

P (S
α0
(t) 6 x) ∼

x↑0+
exp−tx−α0/(1−α0).

Next, concerningδI (t), we saw that

δI (t)
d= Dδ · t δ · [δI ] (6.33)

whereδI
d= S−δδ > 0 is an inverse Ĺevy variable. Thus, we get

δS
α0
(t)

d= [δI (t)]1/α0 · Sα0

d= D1/α0
δ · t δ/α0 · [δI ]1/α0Sα0. (6.34)

Thus

δS
α0
(t)

d= D1/α0
δ · t δ/α0 · Sα0

S
δ/α0
δ

. (6.35)

In addition, from Bayes’ formula and from (6.18),

Ee−λ·
δS
α0(t) = Ee−q

δI (t)|q=λα0 = φδ(Dδt
δλα0) (6.36)

whereφδ is the Mittag–Leffler function. As a result, from (6.19),∫ +∞

0
e−ptEe−λS

α/2
(δI (t)) dt = 1

p(1 +Dδp−δλα/2)
. (6.37)

Remark 6. The Mittag–Leffler function,φδ, enables one to define a positive Mittag–Leffler
random variable,Mδ, as follows:

P (Mδ > x) = φδ(xδ) x > 0.

This variable appears in our context in the following way: withP(t)a standard Poisson process,
let

δN(t) := P(δI (t))
stand for a Poisson process in inverse Lévy time. Let now

δT
α0
(s) := inf (t > 0 : Sα0(δN(t)) > s)

stand for the first time at which the increment process

Sα0(δN(t)) := Sα0
(δN(t) + 1)− Sα0

(δN(t))

exceedss > 0. Physically, this is a ‘time between failure’ variable.
The events ‘δT

α0
(s) > t ’ and ‘maxs16δI (t) S

α0(s1)’ obviously coincide. Thus, upon
conditioning this extreme value problem,

P
(

max
s16δI (t)

Sα0(P (s1)) 6 s
)
=
∫ +∞

0
e−P (Sα0>s)s2fδI(t)(s2) ds2

= φδ(Dδt
δλ)|λ=P (Sα0>s)

= P (δT α0
(s) > t).

As both(s, t) ↑ +∞, observing thatP (Sα0 > s) ∼ s−α0, we get

P (δT
α0
(s) > t) ∼

(s,t)↑+∞
φδ(Dδt

δs−α0) = P (Mδ > D
1/δ
δ ts−α0/δ).

Thus, we have shown that

D
1/δ
δ · s−α/(2δ) ·δ T

α/2
(s)

d→
s↑+∞

Mδ
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and the Mittag–Leffler random variable appears as the limit of ‘the time between failure’

variableδT
α/2
(s), properly rescaled. From this expression, it is clear that the largerα is,

the thinner the tails ofSα/2(·) are and the longer one should wait before crossing the failure
thresholds; in the same way, the smallerδ is, the ‘slower’ the processδI (t) is, and the longer
this waiting time.

Note that ifT
α0
(s) := inf (t > 0 : Sα0(P (t)) > s) is the time between failure of the

sole processSα0(P (t)) := Sα0
(P (t) + 1)− Sα0

(P (t)), proceeding in the same way yields the
convergence result

s−α/2 · T α/2(s) d→
s↑+∞

E

with E an exponentially distributed variable:P (E > t) = exp−t .

Let us now investigate the unidimensional distribution ofδB
α
(t) andδB

α

H (t).

6.4.2. FT-LM. From the obvious property, witht > 0,

B1/2(t)
d= t1/2 ·G (6.38)

and

δS
α0
(t)

d= D1/α0
δ · t δ/α0 · Sα0

S
δ/α0
δ

(6.39)

and we get the property

δB
α
(t)

d= D1/α
δ · t δ/α ·

(
Sα/2

S
2δ/α
δ

)1/2

·G. (6.40)

From Bayes’ formula, withfδSα0(t)(s) the density ofδS
α0
(t)ats > 0, if δ8

α
(t, λ) := Eeiλ·δBα(t),

we get

δ8
α
(t, λ) = Ee−q·

δS
α0(t)|q=λ2/2 = φδ

(
Dδt

δ

(
λ2

2

)α/2)
(6.41)

in terms of the standard Mittag–Leffler function.
Thus, from (6.19), withδ ∈ (0, 1) andα ∈ (0, 2)

δ8
α
(p, λ) :=

∫ +∞

0
e−ptEeiλ·δBα(t) dt = 1

p(1 +Dδp−δ( λ
2

2 )
α/2)

. (6.42)

If α = 2, we recover (6.11), as required.
From expression (6.41), the quantile dispersion grows as

D[δB
α
(t)] ∝ t δ/α. (6.43)

In (6.43), we see a competition between the ‘rare event’ hypothesis(δ < 1) which tends to
slow the dispersion of FT-LM and the ‘extreme event’ hypothesis(α < 2) which tends to
accelerate it. A particular case of interest is whenδ = α/2 for which the critical diffusive

regime is found; in this case, from (6.40):δB
2δ
(t)

d= D
1/(2δ)
δ · t1/2 · S1/2

δ,δ · G, with Sδ,δ the
random variable obtained as the ratio of two independentδ-Lévy-stable variables.
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6.4.3. FT-FLM. In some sense, this is the most general of the processes studied in this paper
as it encompasses all the ingredients introduced so far: fractal time (parameterδ), infinite
memory (parameterH ) and ’heavy tails’ in space (parameterα).

Concerning the FT-FLM:δB
α

H (t) := BαH (δI (t)) = BH(δS
α/2
(t)), with

BH(t)
d= tH ·G (6.44)

and

δS
α/2
(t)

d= D2/α
δ · t2δ/α ·

Sα/2

S
2δ/α
δ

(6.45)

we get the distributional characterization

δB
α

H (t)
d= D2H/α

δ · t (2δH)/α ·
[
Sα/2

S
2δ/α
δ

]H
·G. (6.46)

From Bayes’ formula, settingδ8
α

H (t, λ) := Eeiλ·δBαH (t), and after some algebraic manipulations
similar to those in ([8], vol 2, XIII. 8, (8.4), p 453), we derive the generalized Mittag–Leffler
formula

δ8
α

H (t, λ) = ζδ,α,H
(
D2H
δ t2δH

(
λ2

2

)α/2)
(6.47)

where the functionζδ,α,H (x), x > 0 is defined in the following way:

ζδ,α,H (x) := φδ,H (− log ψ̃α,H (x)). (6.48)

Here the functionφδ,H (x) is the generalized Mittag–Leffler function defined in (6.30) and the
functionψ̃α,H (x) is defined by

ψ̃α,H (x) := ψα,H (x2/α) (6.49)

in terms of the functionψα,H (x) defined in (4.4).
We recall thatψα,H (x) = Ee−xS

2H
α/2, x > 0 is the Laplace transform of aα/2-Lévy-stable

variable raised to the power 2H .
From (4.5), withα ∈ (0, 2) andH ∈ (0, 1)

ψ̃α,H (x) = 1 +
∑
n>1

(−1)n

n!

0(1− (nα)/(4H))
0(1− (nα)/2) xn/(2H). (6.50)

Note that the formulae (6.47)–(6.49) completely characterize the distribution of FT-FLM;
they are, of course, consistent with our previous findings:

(1) If δ = 1, from (6.30) we have the identityφ1,H (x) = exp−x. Thus, in this case,
ζ1,α,H (x) = ψ̃α,H (x) = ψα,H (x2/α); formula (6.47) reduces to (4.4), relative to FLM, as
required.

(2) If H = 1
2, we have the identities:ψ̃α,1/2(x) = Ee−x

2/αSα/2 = e−(x
2/α)α/2 = e−x and

φδ,1/2(x) = φδ(x). Thus, in this case,ζδ,α,1/2(x) = φδ(x); formula (6.47) reduces to
(6.41), relative to FT-LM, as required.

(3) If α = 2, the random variableSα/2 is degenerate (and equal to one); thus,ψ̃2,H (x) = e−x

andζδ,2,H (x) = φδ,H (x). We recover (6.29), relative to FT-FBM, as required.
(4) If bothα = 2 andH = 1

2, ζδ,2,1/2(x) = φδ(x) we recover (6.11), as required.
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If α 6= 2, from the expression (6.47), it is easy to establish that, for some appropriate
constantK > 0,

δ8
α

H (t, λ) ∼
λ↑0+

1−Ktδ|λ|α/(2H) (6.51)

so that the tail behaviour follows:

P (|δBαH (t)| > x) ∝
x↑+∞

t δ · x−α/(2H). (6.52)

Consequently, the quantile dispersion grows as

D[δB
α

H (t)] ∝
t↑+∞

t (2δH)/α (6.53)

which is consistent with all the results (4.9), (6.31), (6.42), (6.12) presented so far. Large
values ofδ andH increase the dispersion ofδB

α

H (t) whereas small values ofα go in the same
direction.

Remark 7. For the class of FT motions whose properties have just been discussed, one may
wish to study the increment process

δBαH (t) := δB
α

H (t + 1)−δ BαH (t).

However, it is not true that this process is stationary: the identityδBαH (t)
d=
δ

BαH (0) = δB
α

H (1)
does not hold, chiefly because the subordinatorδI (t) itself has no SIs.

A fortiori, the property(δBαH (s),
δ BαH (s + t))

d= (δBαH (0),
δBαH (t)) is invalid and the

covariance function depends on boths andt . Thus, for FT-FLM, in sharp contrast to FLM,
the dependence structure of the increments cannot be understood using second-order statistics.
Rather, the sample autocovariance

lim
s↑+∞

1/s
∫ +s

0

δBαH (s) ·δ BαH (s + t) ds

should be used instead. However, in the limit, this quantity is random, owing to the lack of
ergodicity ofδBαH (t).

Remark 8. With, a andσ > 0 some constants, one may define and study the FT version of
multiplicative FLM, following section 5.2:

δP
α

H (t) := exp(at + σ ·δ BαH (t)) > 0.
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